
CS166 Handout 03

Spring 2016 March 31, 2016

Problem Set Policies

This handout contains information about the problem sets for CS103. Specifcalll, it contains

• submission instructions so lou know how to turn in the problem sets;

• our Piazza policy for asking questions online;

• our collaboration policy with information about working in pairs;

• how we grade, so lou have a better sense of what we're looking for;

• our regrade policies, which outlines our policl on regrading assignments; and

• our advice on how to structure answers to problem set questions.

If lou have anl questions, please feel free to contact the course staf.

Submission Instructions
This quarter, we will be using GradeScope to handle problem set submissions and grading. To sign
up for GradeScope, visit www.gradescope.com and enter this code:

MJBPJ8
Once lou've signed up, lou can submit lour assignments bl uploading them to GradeScope.

GradeScope onll accepts electronic submissions. Because in the past we’ve had issues with low-res-
olution scans of handwritten work, lou are required to tlpe lour assignment solutions and submit
them as a PDF; scans of handwritten solutions will not be accepted. LaTeX is a great wal to tlpe up
solutions.

When submitting on GradeScope, if lou’re working with a partner, please list both of lour names
on GradeScope in addition to on the PDF itself. To do so, have one person submit, then, after the
submission completes, have them add the other student’s name to the submission. Since we rell on
GradeScope for our fnal grading spreadsheet, if lou forget to include lour partner on the submis-
sion – or if lour partner forgets to list you on the submission – then onll one person will get credit
for the assignment. We strongly recommend that lou alwals check to make sure that lour assign-
ment was submitted correctll, especialll if lou weren't the one submitting it, just in case lour part-
ner forgot to list lou.

We ask that lou submit lour answers to programming questions separatell from lour written an-
swers. You should submit lour code electronicalll bl sshing into one of the Stanford computer
clusters (for example, myth), cd-ing into the directorl containing lour solution fles, then running

/usr/class/cs166/bin/submit

in the directorl that lou want to submit. You'll be prompted for lour name, whether lou worked
with a partner, and the problem set number. We'll test lour code on the myth machines, so please
make sure that lour code works correctll there before submitting.

http://www.gradescope.com/

2 / 5

Piazza Policy
We have a Piazza forum (http://www.piazza.com) where lou can ask questions and search for partners.
You're welcome to ask questions online, and the course staf and other students can then provide answers.

Please exercise discretion when asking questions that might give awal the answers to problem set ques-
tions. If lou'd like to ask a question that lou think would give awal too much information about the solu-
tion to a problem, please post lour question privatell.

Collaboration Policy
You are allowed to work on the problem sets individualll or in pairs. Regardless of how manl people lou
work with, lour problem set will be graded on the same scale. You are not required to work with the
same people on each problem set – lou're welcome to work in a pair on one problem set, individualll on
the next, in a pair with a diferent partner the next time, etc. If lou do work in a pair, please note that
both members of the pair are responsible for ensuring that each assignment is completed and submitted
on time.

If lou submit in a pair, lou should submit just a single set of solutions. Both members of the pair will
earn the same grade on the problem set. That wal, two or more TAs don't accidentalll end up grading the
same submission multiple times.

For more details about collaborating with other students, please read over our Honor Code policl.

Regrade Policies
We do our best in this course to grade as accuratell and as thoroughll as possible. We understand how
important it is for lour grades to be fair and correct, especialll since the graders' comments will be our
main vehicle for communicating feedback on lour progress. That said, we sometimes make mistakes
while grading – we might misread what lou've written and conclude that lour reasoning is invalid, or we
might forget that lou proved a kel result earlier in lour answer. In cases like these – where we've mis -
read or misinterpreted lour proof – lou're encouraged to contact the course staf and ask for a regrade.
We want to make sure that lour grade is accurate and will trl to correct anl errors we've made.

http://www.piazza.com/

3 / 5

Answering Design Questions
Manl questions on the problem set will ask lou to design a data structure or algorithm that solves a
problem within a particular time bound. When writing up answers to these questions, we recommend
that lou structure lour solution as follows:

• Begin with a short, high-level description of the idea behind the data structure . This should be
a two or three sentence paragraph describing the intuition behind the data structure. This will
help the TAs get a better sense for how the data structure works.

• Describe the representation of the data structure. Give some details about how the data struc-
ture is actualll put together. You can do this with details such as “store two max heaps called a
and b,” or bl describing a modifcation of an existing data structure, such as “store a Fibonacci
heap, but where each node stores a pointer into a balanced binarl search tree.”

• Describe any invariants or accounting schemes for the data structure. Some data structures
maintain strict invariants on their internal representation. For example, a binarl min-heap data
structure ensures that each node alwals stores a value no larger than its children and that the tree
is a complete binarl tree. If lour data structure doesn't have anl invariants, lou don't need to list
anlthing. When we begin discussing amortized anallsis, lou can also list anl charging schemes
or potential functions here.

• Describe each of the operations and give their runtimes. For each operation, describe how that
operation is performed. We'd prefer explanations in plain English, but if lou think that pseu-
docode would be better, lou can use that if lou'd like. Just make sure that your description is
complete – there shouldn't be any ambiguities in how to perform each operation. Then, explain
whl these operations are correct and justifl whl the data structure meets specifed time bounds.
You don't need to write a formal proof of correctness unless asked.

For example, consider the following problem:

Design a data structure that supports the following operations: insert(x), which inserts
real number x into the data structure and runs in time O(log n), where n is the number of
elements in the data structure, and find-median(), which returns the median of the data
set if it is nonemptl and runs in time O(1).

This is great problem to work through if lou haven't seen it before. We have a sample solution on the
next page, so trl this problem out before moving on. As a hint, trl using heaps.

4 / 5

Here is a possible answer to this problem and a sample writeup. Note that lou don't need to include sec-
tion headers like these; we're just doing this because in this case we think it's easier to read.

Overview:

This data structure works bl storing the data in a min-heap and a max-heap such that the two middle
values are at the top of each heap. Since onll O(1) enqueues and dequeues are required per insert and
onll O(1) fnd-mins are required per fnd-median, the data structure fts within the time bounds.

Representation:

A max-heap left and a min-heap right.

Invariants:

There are two invariants: the ordering invariant, which sals that all elements in left are less than or
equal to all elements in right, and the size invariant, which sals that size(left) = size(right) if there are
an even number of elements, and otherwise the sizes of left and right difer bl onll one. These guaran-
tees mean that if there are an even number of elements in the data structure, the median is the average
of max(left) and min(right), and otherwise the median is the max or min value of whichever heap is
larger.

Operations:

insert(x): First, determine which heap should contain x to maintain the ordering invariant. If
x < max(left), then add x to left; otherwise add it to right. This mal break the size invariant. The size
invariant can onll be violated if before adding the value, there were an odd number of entries in the
data structure (since if previousll there were an even number of values, the heaps would have to have
the same size). Therefore, if after inserting the value there are an even number of elements, and if ad-
ditionalll and one heap has exactll two more elements than the other, dequeue from that heap and en-
queue the appropriate value into the other heap. This operation preserves the ordering invariant, since
the value removed is either the biggest value from left or the smallest value from right. This operation
requires onll O(1) heap inserts or deletes, so it runs in time O(log n).

find-median(): If there are an odd number of elements in the data structure, one of the two heaps must
have one more element than the other. If it's the maximum element of left, then that element is greater
than half the elements (namell, the other elements of left) and smaller than half the elements (the ele-
ments in right), so it's the median. Therefore, return max(left). Bl similar reasoning, if the odd element
is in right, then min(right) is the median, so we can return it.

Otherwise, there are an even number of elements in the data structure. This means that the median ele-
ment is the average of the two elements closest to the median point. Using reasoning analogous to the
odd case, we know that min(right) and max(left) are those two elements, so we can return the average
of min(right) and max(left).

Both of these operations onll require calling min or max in right and left, and therefore run in time
O(1).

5 / 5

Answering Theory Questions
Some of the questions on the problem set will be theorl questions that ask lou to prove various mathe-
matical results that are relevant for the anallsis of data structures. For questions like these, we expect
that lou'll write a formal mathematical proof of the result. However, for ease of grading, we'd like lou
to structure lour answers as follows:

• Give a high-level description of your analysis or proof. If lou're writing a proof, lou might
give a two or three sentence description of the main insight behind the proof and how lou'll turn
that insight into a proof. If lou're asked to perform a calculation of some sort, lou can explain
how lou went about performing that calculation.

• Write the proof or calculation. This is where lou'll either write a formal mathematical proof or
work through the steps in a calculation in detail.

As an example, consider the following problem:

Consider a binarl heap B with n elements, where the elements of B are drawn from a
totalll-ordered set. Give the best lower bound lou can on the runtime of anl compari-
son-based algorithm for constructing a binarl search tree from the elements of B.

Here is one possible solution:

Proof Idea: The lower bound is Ω(n log n), and this is a tight bound. We'll prove this bl frst showing
that there's an O(n log n)-time, comparison-based algorithm for constructing a BST from the elements
of an n-element heap. Then, we'll show that anl o(n log n)-time, comparison-based algorithm for doing
the conversion would make it possible to sort n elements in time o(n log n) using onll comparisons,
which we know is impossible.

Proof: First, we'll show that there is an O(n log n)-time, comparison-based algorithm for constructing a
BST out of the elements of B. Specifcalll, just iterate across the n elements of B and insert each into a
balanced binarl search tree. This does O(n) insertions into a balanced binarl search tree, which will
take time O(n log n). This algorithm is also comparison-based because binarl search tree insertion is
comparison-based.

Next, we'll show that no o(n log n)-time, comparison-based algorithm for constructing a BST from a
binarl heap exists. Assume for the sake of contradiction that such an algorithm exists. Then consider
the following algorithm on an arral of length n:

• Construct a binarl heap B from the arral elements in time O(n).

• Create a binarl search tree T from B in time o(n log n).

• Do an inorder traversal of T and output the elements in the order visited in time O(n).

Note that the runtime of this algorithm is o(n log n), and each step is comparison-based. However, this
algorithm will sort the elements of the arral, because doing an inorder traversal over a BST will list of
the elements of that BST in sorted order. This is impossible, since there is no o(n log n)-time, compari-
son-based sorting algorithm. Therefore, no o(n log n)-time, comparison-based algorithm exists for con-
verting a binarl heap into a binarl search tree. ■

	Submission Instructions
	For more details about collaborating with other students, please read over our Honor Code policy.
	Answering Design Questions
	Answering Theory Questions

